RAISING LIBRARIANS' DISCIPLINARY INFORMATION LITERACY:

CAN LIBGUIDES HELP?

Jana Varlejs
Associate Professor Emerita, Rutgers
varlejs@rutgers.edu

CPDWL/IL
Tampere
August 10, 2012
What I plan to present:

• An imaginary situation as a way to clarify the problem that gave rise to my study
• A brief explanation of LibGuides
• A very short account of my methodology
• What I found out
• Based on the findings, what suggestions do we want to make to instruction librarians? I want to hear YOUR ideas!
Your college library has a small staff, so each librarian must assume multiple liaison responsibilities. You are assigned to the natural sciences, even though your background is in the social sciences.

When you express concern about your ability to teach information literacy to students in subjects in which you yourself are illiterate, your boss reminds you that all the other librarians have degrees in the humanities!
What to do?

Take courses?

Ask faculty for advice?

Join your association’s science section?

Look for a new job?!!
The comfort zone

What do you, as a typical instruction librarian, know?

- What is available in your library and how to use the resources
- What is NOT there but can be obtained & how
- General elements of information literacy
- How to teach the above to students
- How humanities and social science faculty approach their subjects in research and teaching
How did you acquire this know-how?

• Formal study in LIS, following one or more fields in humanities/soc sciences
• On-the-job training
• Learning through LIS professional associations, publications, etc.
• Institutes, webinars, workshops on information literacy, pedagogy, etc.
The discomfort zone

What do many instruction librarians often NOT know?
- Terminology, major figures, key resources in disciplines other than those predominant in college curricula
- How research is conducted and communicated in unfamiliar disciplines
- How different disciplines are taught
What can you do about it?

- Consult experienced subject librarians
- Read introductory material; scan leading journals
- Read journals on teaching the subject
- Attend disciplinary conferences
- Attend faculty seminars

But this all takes time!
Back to the scenario:

Suppose that you are asked--on short notice--to show a physics class some basic information resources in the discipline and how to use them?

Your library does not have a research guide for physics on its website, but you assume that there are academic libraries similar to yours that might.
Where can you look for help?

Research or subject guides, pathfinders – whatever they are called -- many academic libraries have something of the sort online

There even is a company that sells software that libraries can use to build their online guides:
Could Springshare help you?

This vendor lets you link to its subscribers’ LibGuides, which include subject guides. Sharing is encouraged, so if you can find a physics guide from a college not too different from yours, you can copy and adapt (just give credit!). For example, see what you can locate fast:
Steal this LibGuide!
So LibGuides CAN help!

• Stealing is actually encouraged (but be nice – give credit)

• You still have to customize; don’t be overly reliant on others’ work
Now on to my study...

(you can read the paper in the proceedings)

I began with a question about what a librarian can do to develop enough subject expertise to help students use information resources in the context of disciplines new to the librarian.

Most continuing education and informal learning for instruction librarians has to do either with technology or pedagogy. You see little about CONTEXT and CONTENT.
Consider this:

Only 50% of sci-tech librarians have a science background (Eells, 2006)
Methodology

I chose chemistry and physics as content areas for examining LibGuides that a librarian with no background in these might want to adapt.

From the Carnegie Classifications, I identified 272 four-year selective academic institutions likely to have traditional liberal arts curricula and good libraries.
Methodology cont.

• The list of 272 institutions was matched against the list of Springshare LibGuide subscribers.

• Those with less than 50 guides were eliminated except for 4 classified as Doc/STEM dominant (STEM=science, technology, engineering, mathematics).

• Excluded were 6 cases with no chemistry or physics in the curriculum, or no librarian associated with either subject.
Data collected

• The typical LibGuide gives information about the author. The title of the librarian – generic or specific to the subject -- was noted. Where there was a link to biographical information, qualifications were recorded.

• Where title and/or biographical information was lacking or ambiguous in the LibGuide, the institutions website, Google, and LinkedIn were consulted.
Educational background of authors of chemistry/physics LibGuides (n=138*)

<table>
<thead>
<tr>
<th>Education</th>
<th>Number of Librarians</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLS/MLIS</td>
<td>92</td>
</tr>
<tr>
<td>No MLS/MLIS</td>
<td>4</td>
</tr>
<tr>
<td>Science background</td>
<td>53</td>
</tr>
<tr>
<td>No science background</td>
<td>31</td>
</tr>
<tr>
<td>No science education data</td>
<td>54</td>
</tr>
</tbody>
</table>

*One librarian shared by two colleges is counted twice
Librarians’ backgrounds related to institutional size (n=84)

<table>
<thead>
<tr>
<th>Education/background</th>
<th>Librarians at smaller institutions</th>
<th>Librarians at larger institutions</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>With science</td>
<td>20</td>
<td>33</td>
<td>53</td>
</tr>
<tr>
<td>Without science</td>
<td>20</td>
<td>11</td>
<td>31</td>
</tr>
<tr>
<td>Undetermined</td>
<td>30</td>
<td>24</td>
<td>54</td>
</tr>
</tbody>
</table>

Of the 20 librarians at Doc/STEM schools, only 4 have degrees in science. All but one of these schools are smaller than the median.
In addition to the examination of LibGuides in chemistry and physics, inquiries were sent to members of Springshare’s academic discussion list and to science librarian subscribers to the ALA’s IL instruction listserv (ILI-L):

*I am interested in learning about science librarians' experience with developing and maintaining chemistry and physics LibGuides. Do you have an academic background in science, e.g., BA in chemistry, etc.? If not, how do you learn what you need to know in order to prepare a LibGuide? Also, how do you see the relative value of having an MLS or science degree—which is more important?*
Science degree or MLS?

• Of the science librarians who responded to my question, 60% had no science background, and said the MLS was more valuable.

• Of those who did study science, 66% thought the MLS was more important than the science background.

• The rest felt that both were important.

[small n, no way to tell whether representative]
Why some say science degree is key:

- Credibility with faculty
- Greater ability to help students
- Understanding of the specialized language of science
- Commitment to constant learning
Summary of comments

Overall, major sources of learning about unfamiliar disciplines are teaching faculty and experienced librarian colleagues. Other strategies mentioned included:

- Examination of one’s own library holdings
- Scrutiny of science course descriptions, textbook orders, syllabi, and assignments
- Experimentation with databases and interfaces
- Use of other libraries’ LibGuides
- Perusal of journals of education for specific sciences
- Membership in associations, listservs, and blogs focused on sciences
- Participation in conferences and workshops for science librarians
- Examination of vendors’/publishers’ catalogs
- Looking at holdings of similar libraries
Discussion

Both my examination of a fair number of chemistry and physics LibGuides and the responses to my online call for comments suggested that authors’ local circumstances, especially budget, seem to be the most powerful determinants of guide contents. There is little similarity or consistency, which can be explained only partly by differences in institutional size.
Important factors influencing the quality of a guide or its appropriateness for the particular institution are not readily determined. It may be that course guides rather than subject guides would be better sources for such judgments. It is impossible to tell from the guides I looked at to what degree librarians and faculty collaborated in their preparation.
Conclusions

LibGuides can indeed raise librarians’ disciplinary information literacy. As one respondent says, “I try to steal from other institutions as much as I can.”
Finally . . .

Let’s have a quick straw poll: How many of you agree with the librarians who said that the MLS is more important than subject expertise? How many feel the opposite?

Comments? Questions?
Thank you for your attention!

varlejs@rutgers.edu